2019 James S. Rickards Fall Invitational

For all questions, answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

- 1. How many regular polygons have more sides than diagonals?(A) 1(B) 2(C) 3(D) 4(E) NOTA
- 2. There is a triangle with side lengths of 6, 8, and 10. The Euler line of this triangle intersects the triangle at two points. What is the distance between these two points?
 - (A) 3 (B) 4 (C) 4.5 (D) 5 (E) NOTA
- 3. A circle goes through the points (5,7) and (10,-3). Let C be the center of the circle. What is the equation that describes the locus of all possible placements of C?

(A)
$$y = 0.5x - 1.75$$
 (B) $x^2 + y^2 = 74$ (C) $x^2 + y^2 = 109$ (D) $y = -0.5x + 5.75$ (E) NOTA

- 4. Deekshita is packing her suitcase to attend a Jonas Brothers Concert. The suitcase is in the shape of a quadrilateral. To help Deekshita pass airline regulations, find the sum of the interior and exterior angles in any quadrilateral, in radians.
 - (A) 360° (B) 3π (C) 4π (D) 5π (E) NOTA
- 5. Farzan's favorite snack is a bag of chips. He receives a peculiar chip container that can be modeled as two concentric circles. Farzan measures a chord of the larger circle, that is also tangent to the smaller circle, and sees that it has a length of 12. What is the maximum positive difference in area of the two circles?
 - (A) 36 (B) 36π (C) 72 (D) 72π (E) NOTA
- 6. Solve for a:

7. Rohan is flexing his trigonometry knowledge by asking you to simplify the expression below. Surprise Rohan and give the correct answer.

$$2(\sin(30^\circ) + \cos(30^\circ))(\sin(60^\circ) + \cos(60^\circ))(\sin(45^\circ) + \cos(45^\circ) + \tan(45^\circ))$$
(A) $2 + 2\sqrt{2} + \sqrt{3} + \sqrt{6}$ (B) $1 + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{6}$ (C) $1 + \sqrt{2} + \sqrt{3} + \sqrt{6}$ (D) 0 (E) NOTA

8. What is the sum of all distinct numbers x that satisfy the following conditions: 0 < x < 1, x only contains one 2, and x contains at least one zero in its decimal representation (such as 0.2 and 0.0002)?

- (A) 0.21 (B) 0.22 (C) $0.\overline{2}$ (D) 0.23 (E) NOTA
- 9. What is the product of the inradius and circumradius in a triangle with side lengths 13, 14, and 15?
 (A) 30
 (B) 32.5
 (C) 33.6
 (D) 40
 (E) NOTA

10. Tanmay is making Tanvi a birthday card. In order to cut out the perfect shape for the card, he plots four points on a grid. The points are (1,3), (2,5), (5,-1), and (12,0), and the card is in the shape of a convex quadrilateral. What is the area of Tanmay's card?

(A) 10 (B) 16 (C) 28.5 (D) 57 (E) NOTA

2019	019 James S. Rickards Fall Invitational				Geometry Individual	
11.	. James models Aaron's pencil, and realizes that it is a triangle with sides 2, x , and 6. After measuring the ar James is shocked to find that he gets x square units. Find x^2 .					
	(A) 30	(B) 32	(C) 34	(D) 36	(E) NOTA	
12.	What is the sum of the lengths of the altitudes in a triangle with side lengths 20, 21, and 29?					
	(A) $14\frac{14}{29}$	(B) $34\frac{14}{29}$	(C) $35\frac{14}{29}$	(D) $55\frac{14}{29}$	(E) NOTA	
13.	Let n be called a <i>special number</i> if it is a positive integer, and the sum of the digits of 2^n is n. It can be shown that 70 is a special number. What is the only other special number?					
	(A) 8	(B) 9	(C) 10	(D) 11	(E) NOTA	
14.	4. Dylan, the compulsive liar, gives you four statements to evaluate:					
	1. The midpoints of the sides of a quadrilateral form a parallelogram. 2. The surface area of a cone with radius 3 and height 4 is 15π . 3. The volume of a sphere is $\frac{S\sqrt{S}}{6\sqrt{z}}$, where S is the surface area.					
	4.Euler is the father of geometry.					
	What is the sum of the number labels of the true statements? (For example, if you thought only statements 1 and 4 are true, put 5 as your answer.)					
	(A) 4	(B) 5	(C) 8 ((D) Cannot be determined	(E) NOTA	
15.	A right triangle and three non-congruent, regular pentagons are drawn such that the three pentagons are outside the triangle, and each of the pentagons share a side with the right triangle. If the areas of the two smaller pentagons					

are 60 and 80, what is the area of the largest pentagon?

- (A) 100 (B) 140 (C) 180 (D) Cannot be determined (E) NOTA
- 16. A sphere is circumscribed about a cone with radius 15 and height 25. What is the surface area of the sphere? (A) 1024π (B) 1080π (C) 1120π (D) 1156π (E) NOTA
- 17. Shreyas is bored during a lecture and decides to draw random shapes on his paper, and see how many times they intersect. He is drawing a square, a line, and a circle. Which number could he not get when he counts the number of intersection points on his paper?
 - (B) 11 (A) 10 (C) 12 (D) 13 (E) NOTA
- 18. A sphere is inscribed in a regular hexahedron, and a regular octahedron is inscribed in the sphere. What is the ratio of the volume of the octahedron to the hexahedron?
 - (A) $\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{5}$ (B) $\frac{1}{7}$ (E) NOTA

19. What is the distance from (0,0) and $(x^2 - y^2, 2xy)$ when $x \ge y \ge 0$?

(D) xy(x+y)(B) $\sqrt{x^4 + y^4}$ (C) $(x - y)^2$ (A) $(x+y)^2$ (E) NOTA

20. Tanusri was relearning geometry for fun, and she came across the concept of lattice points. Define a positive integer to be a Tanusri sphere number if the equation $x^2 + y^2 + z^2 = D$, when graphed, does not pass through any lattice points. What is the least Tanusri sphere number?

(C) 11 (A) 7 (B) 9 (D) 13 (E) NOTA

2019 James S. Rickards Fall Invitational

- 21. Eric's favorite theorem is the Pythagorean Theorem, which only works for right triangles. In similar spirit, he defines a right quadrilateral as a quadrilateral with sides a, b, c, and d that satisfies $a^2 + b^2 + c^2 = d^2$. A certain right quadrilateral has distinct, integer side lengths, and perimeter 18. What is the product of its side lengths?
 - (A) 210 (B) 240 (C) 250 (D) 252 (E) NOTA

22. Rayyan's favorite toy is a plush model of a cube. However, he accidentally chopped it into two pieces with a knife! Which of the following cannot be a cross-section of a cube that he created?

- (D) hexagon (A) triangle (B) quadrilateral (C) pentagon (E) NOTA
- 23. Akhil wanted to create a unique hula hoop. The hula hoop can be modeled by the circumcircle of a triangle with vertices in the coordinate plane at (0,6), (-4,0), and (3,0). What is the radius of the model of his hula hoop?

(A)
$$\frac{\sqrt{65}}{2}$$
 (B) $\frac{\sqrt{70}}{2}$ (C) $3\sqrt{2}$ (D) $\frac{5\sqrt{3}}{2}$ (E) NOTA

24. Shrung and Nitish are thinking of starting a company. They want the logo to be a dodecagon inscribed inside a unit circle. In order to help them calculate the cost, find the area of this dodecagon.

- (D) $2\sqrt{3}$ (B) $2\sqrt{2}$ (C) 3 (A) $\sqrt{6}$ (E) NOTA
- 25. Regular hexagon $A_1A_2A_3A_4A_5A_6$ is drawn. There is a point P inside the hexagon such that $[\triangle A_1A_2P] = 6$, $[\triangle A_3 A_4 P] = 10$, and $[\triangle A_5 A_6 P] = 11$. Find $[\triangle A_2 A_3 P][\triangle A_4 A_5 P][\triangle A_6 A_1 P]$.
 - (B) 648 (C) 660 (A) 624 (D) 672 (E) NOTA

26. Akash and Vishnav love geometry, and present you with the following question: In $\triangle ABC$, denote its incircle as ω . Let the midpoint of \overline{BC} be M. Segment AM intersects ω at two distinct points, P and Q, such that AP < AQ. It is known that AP : PQ : QM = 1 : 3 : 1. The sides of the triangle are positive integers a, b, and c, and gcd(a, b, c) = 1. Find a + b + c. (B) 90 (C) 96 (A) 84

- (D) 128 (E) NOTA
- 27. Shubham enjoys making right, square pyramids. When he made a particular square pyramid, with base ABCD, having side length 2, and apex P, he noticed that if you let M be the midpoint of \overline{BC} , then $\angle APM = 90^{\circ}$. What is the ratio of the surface area to the volume of this pyramid?
 - (A) $\frac{3}{2} \left(\sqrt{6} + \sqrt{2} \right)$ (B) $3 + 3\sqrt{2}$ (C) $4 + 4\sqrt{2}$ (D) $6 + 6\sqrt{2}$ (E) NOTA

28. In $\triangle ABC$, AB = 13, BC = 14, and AC = 15. Let M_1 and M_2 be the midpoints of \overline{AB} and \overline{AC} , respectively. The line passing through M_1 and M_2 intersects the circumcircle of $\triangle ABC$ at two places, P_1 and P_2 , such that $M_1P_1 < M_1P_2$. Find $M_1P_1 + M_2P_2$. (B) $7 - 2\sqrt{5}$ (D) $5\sqrt{10} - 7$ (A) $6 - \sqrt{10}$ (C) 7 (E) NOTA

- 29. In equilateral $\triangle ABC$, point P lies inside the triangle such that AP = 3, BP = 5, and $\angle APB = 120^{\circ}$. Find PC.
 - (C) $2\sqrt{6}$ (B) $\sqrt{21}$ (D) 7 (A) $\sqrt{19}$ (E) NOTA
- 30. Karthik, while making this test, was eating a weirdly-shaped waffle that was a regular heptagon, which had a side length of 1. Seven of the diagonals have length x, and the other seven have length y, where y > x. If x is approximately 1.802, approximate y to two decimal places.
 - (A) 2.11 (B) 2.16 (C) 2.19 (D) 2.25 (E) NOTA